Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lars Eriksson, ${ }^{\text {a* }}$ Johan Eriksson ${ }^{\text {b }}$ and Jiwei Hu ${ }^{\text {c }}$

${ }^{\text {a }}$ Division of Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, ${ }^{\mathbf{b}}$ Department of Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, and ${ }^{\text {c }}$ Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China

Correspondence e-mail: lerik@struc.su.se

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.029$
$w R$ factor $=0.050$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2,4-dibromophenyl) ether

Packing effects are shown to be of minor importance in determining the molecular conformation of the title compound, $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}$, by comparison with a conformational map calculated with semi-empirical (AM1) calculations.

Comment

The title compound, (I) (Fig. 1), crystallizes with two molecules in the asymmetric unit, a situation not occurring in the other brominated diphenyl ethers with known crystal structures. All four benzene rings are planar to within 0.01 (1) \AA. No anomalous bond distances or angles are found (Table 1). The two rings of molecule 1, C1-C6 and C7-C12, are inclined at $67.5(1)^{\circ}$ to each other, and the two rings of molecule 2 , $\mathrm{C} 13-\mathrm{C} 18$ and $\mathrm{C} 19-\mathrm{C} 24$, are inclined at $62.0(1)^{\circ}$ to each other.

(I)

The orientational relation between the two unique molecules, shown in Fig. 2, was computed using the program ROTERA (Norrestam, 2004; Diamond, 1988). The average deviation between the atoms in the two molecules, one of them rotated to a perfect overlap with the central O and neighbouring C atoms, is $0.22 \AA$. The similarity between the two molecules can also be deduced from the similar torsion angles involving the ether O atom in the two molecules (Table 1). The observed torsion angles defining the relative

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probablity level and H atoms are shown as circles of arbitrary radii.

Received 28 June 2004 Accepted 16 July 2004 Online 31 July 2004

Figure 2

A stereoview of an overlay of the two unique molecules of (I), one of them rotated to a perfect overlap at the O and its two neighbouring C atoms.
orientation of the aromatic rings can be reproduced by semiempirical calculations using the $A M 1$ Hamiltonian with MOPAC-6 (Stewart, 1990), to an average discrepancy between observed and calculated torsion angles of 10°. Several broad shallow minima can be detected in the complete torsion map, shown in Fig. 3, computed with MOPAC-6 with 10° spacing for the two torsion angles defining the conformation over the ether O atom. Thus, one may draw the conclusion that packing effects are of minor importance in determining the conformations of the molecules comprising (I).

The two shortest intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts are $\mathrm{Br} 2 \cdots \mathrm{Br} 4^{\mathrm{i}}$ [3.808 (1) \AA; symmetry code: (i) $1-x, 1-y$, $1-z]$ and $\mathrm{Br} 2 \cdots \mathrm{Br}^{\mathrm{i}}$ [3.779 (1) Å]. These intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ distances cannot be regarded as short in a comparison with similar intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts for Br -substituted aromatic substances found in a search of the Cambridge Structural Database (CSD, Version 5.25 of November 2003; Allen, 2002; Orpen, 2002; Allen \& Motherwell, 2002; Taylor, 2002). The intermolecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts in (I) shorter than $4.15 \AA$ are mediating contacts between different molecules in the a direction. The cut-off distance of $4.15 \AA$ should be considered long for $\mathrm{Br} \cdots \mathrm{Br}$ interactions when compared with other $\mathrm{Br} \cdots \mathrm{Br}$ contacts found in the CSD. Most of the intermolecular $\mathrm{Br} \cdots \mathrm{Br} \cdots \mathrm{Br}$ angles for the above-mentioned contacts shorter than $4.15 \AA$ are close to 90°, and none is less than 55°.

Experimental

The synthesis of the title compound has been descibed earlier by Hu (1999). Crystals of (I) were obtained from a solution in ethanol.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}$
$M_{r}=485.81$
Monoclinic, $P 2_{1} / c$
$a=8.5568(14) \AA$
$b=13.822(2) \AA$
$c=23.295(4) \AA$
$\beta=90.842(19)^{\circ}$
$V=2754.9(8) \AA^{3}$
$Z=8$
$D_{x}=2.343 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=485.81$
Monoclinic, $P 2_{1} / c$
$a=8.5568$ (14) A
$c=23.295(4) \AA$
$\beta=90.842$ (19) ${ }^{\circ}$
$Z=8$

Mo $K \alpha$ radiation
Cell parameters from 962 reflections
$\theta=3.3-52.0^{\circ}$
$\mu=11.67 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.26 \times 0.10 \times 0.08 \mathrm{~mm}$

Figure 3
A conformational map of (I) with heat of formation as a function of the two torsion angles $\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7$ and $\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$, or similar torsion angles in the second molecule. The contour levels are marked at $1 \mathrm{kcal} \mathrm{mol}^{-1}$ spacing from 51 to $64 \mathrm{kcal} \mathrm{mol}^{-1}\left(1 \mathrm{kcal} \mathrm{mol}^{-1}=\right.$ $4.184 \mathrm{~kJ} \mathrm{~mol}^{-1}$). The conformations of the two molecules are indicated with dots.

Data collection

Stoe IPDS area-detector diffractometer
φ scans
Absorption correction: numerical (X-RED; Stoe, 1997)
$T_{\text {min }}=0.047, T_{\text {max }}=0.356$
15424 measured reflections

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0151)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 2$	$1.885(3)$	$\mathrm{Br} 5-\mathrm{C} 14$	$1.885(3)$
$\mathrm{Br} 2-\mathrm{C} 4$	$1.898(3)$	$\mathrm{Br} 6-\mathrm{C} 16$	$1.895(3)$
$\mathrm{Br} 3-\mathrm{C} 8$	$1.893(4)$	$\mathrm{Br} 7-\mathrm{C} 20$	$1.896(3)$
$\mathrm{Br} 4-\mathrm{C} 10$	$1.891(3)$	$\mathrm{Br} 8-\mathrm{C} 22$	$1.909(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7$	$118.6(3)$	$\mathrm{C} 13-\mathrm{O} 2-\mathrm{C} 19$	$120.1(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$115.1(3)$	$\mathrm{C} 18-\mathrm{C} 13-\mathrm{O} 2$	$123.6(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$124.4(3)$	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 14$	$116.3(3)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{O} 1$	$122.6(3)$	$\mathrm{C} 20-\mathrm{C} 19-\mathrm{O} 2$	$115.3(3)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 1$	$117.2(3)$	$\mathrm{C} 24-\mathrm{C} 19-\mathrm{O} 2$	$124.4(3)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$-155.4(3)$	$\mathrm{C} 19-\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 18$	$47.2(5)$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 6$	$27.7(5)$	$\mathrm{C} 19-\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 14$	$-139.8(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 12$	$50.0(5)$	$\mathrm{C} 13-\mathrm{O} 2-\mathrm{C} 19-\mathrm{C} 20$	$-159.5(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$-135.7(3)$	$\mathrm{C} 13-\mathrm{O} 2-\mathrm{C} 19-\mathrm{C} 24$	$25.2(5)$

organic papers

The $R_{\text {int }}$ value is rather high, due in large part to unobserved and/ or weak reflections. Neglecting all reflections with negative observed intensity (none more significant than 3.5σ) decreases $R_{\text {int }}$ to 0.073 . Furthermore, if all reflections less significant than 3σ are omitted, $R_{\text {int }}$ drops to 0.051 . This shows clearly that a large number of weak reflections make large contributions to $R_{\text {int }}$. H atoms were placed in geometrical positions and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: EXPOSE in IPDS (Stoe, 1997); cell refinement: $C E L L$ in IPDS; data reduction: INTEGRATE in IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: EASYPLOT (Karon, 1999)

This work was supported by the Swedish Natural Science Research Council.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H. \& Motherwell, W. D. S. (2002). Acta Cryst. B58, 407-422.
Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-str. 1, 53121 Bonn, Germany.
Diamond, R. (1988). Acta Cryst. A44, 211-216.
Hu, J. (1999). PhD thesis, University of Jyväskylä, Finland. ISBN 951-39-0524-1.
Karon, S. (1999). EASYPLOT. Spiral Software, 57 Baker Hill Road, Lyme, NH 03768, http://www.spiralsoftware.com/ep/eplot.html
Norrestam, R. (2004). ROTERA. Division of Structural Chemistry, Stockholm University, Sweden.
Orpen, A. G. (2002). Acta Cryst. B58, 398-406.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stewart, J. J. P. (1990). MOPAC-6 Manual. Quantum Chemistry Program Exchange (QCPE-455), Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA. http://qcpe.chem.indiana.edu/
Stoe (1997). IPDS (Version 2.87) and X-RED (Version 1.09). Stoe \& Cie, Darmstadt, Germany.
Taylor, R. (2002). Acta Cryst. B58, 879-888.

